Omnichannel diagnosis for micro, small and medium-sized companies, sectorial study
DOI:
https://doi.org/10.7764/cdi.59.70429Palabras clave:
cambio tecnológico, comercio minorista y mayorista, análisis de conglomeradosResumen
Este estudio explica las características y comportamientos omnicanal de las micro, pequeñas y medianas empresas (MIPYMES) del sector alimentario en Antioquia, Colombia. Evalúa las condiciones necesarias para alcanzar una clasificación omnicanal basada en tres dimensiones: modelos de marketing, opciones multicanal y cadena de suministro con tecnologías digitales. Se empleó una metodología explicativa utilizando datos empíricos de encuestas administradas a 140 MIPYMES, y se utilizó el análisis de conglomerados para agrupar a las empresas. Los resultados muestran un comportamiento omnicanal general relativamente bajo, con las empresas medianas superando a las pequeñas y a las microempresas. Las tecnologías digitales mejoradas y las plataformas integradas pueden mejorar significativamente las condiciones omnicanal, lo que conduce a una mejor rentabilidad y retención de clientes. Los hallazgos enfatizan la importancia de la integración digital y la necesidad de más investigación sobre los aspectos tecnológicos y metodológicos de la implementación omnicanal.
Descargas
Citas
Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. Journal of Industrial Information Integration. 18, 100129. https://doi.org/10.1016/j.jii.2020.100129
Alexandrova, E. & Kochieva, A. (2021). Modern Aspects of Digital Technologies Development in Retail Networks. In T, Antipova (Eds.), Comprehensible Science. ICCS 2020. Lecture Notes in Networks and Systems (vol. 186) (pp. 111–120). Springer. https://doi.org/10.1007/978-3-030-66093-2_11
Alonso-Garcia, J., Pablo-Martí, F., & Nunez-Barriopedro, E. (2021). Omnichannel Management in B2B. Complexity-based model. Empirical evidence from a panel of experts based on Fuzzy Cognitive Maps. Industrial Marketing Management, 95, 99–113. https://doi.org/10.1016/J.INDMARMAN.2021.03.009
Arkhipova, N. I., Azoev, G. L., & Gurieva, M. T. (2021). Omnichannel as a Modern Concept of Interaction with the Consumer. In E. G. Popkova & B. S. Sergi (Eds), "Smart Technologies" for Society, State and Economy. ISC 2020. Lecture Notes in Networks and Systems (vol. 155) (pp. 530-537). Springer. https://doi.org/10.1007/978-3-030-59126-7_60
Bagheri, B., Yang, S., Kao, H. A., & Lee, J. (2015). Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC-PapersOnLine, 48(3), 1622–1627. https://doi.org/10.1016/J.IFACOL.2015.06.318
Belyakov, S. A., Eirikh, V. Y., & Stepina, I. O. (2020). Changing consumer behavior and marketing trends, changes after the covid-19 pandemic. Journal of Computing and Information Technology, 3(25), 363–373. https://doi.org/10.15350/2409-7616.2020.3.32
Blut, M., Teller, C., & Floh, A. (2018). Testing Retail Marketing-Mix Effects on Patronage: A Meta-Analysis. Journal of Retailing, 94(2), 113–135. https://doi.org/10.1016/j.jretai.2018.03.001
Cai, Y. C. & Lo, C. K. Y. (2020). Omni-channel management in the new retailing era: A systematic review and future research agenda. International Journal of Production Economics, 229, 107729. https://doi.org/10.1016/j.ijpe.2020.107729
Chakraborty, D., Rana, N. P., Khorana, S., Singu, H. B., & Luthra, S. (2023). Big data in food: Systematic literature review and future directions. Journal of Computer Information Systems, 63(5), 1243-1263. https://doi.org/10.1080/08874417.2022.2132428
Cocco, H. & De-Juan-Vigaray, M. D. (2022). A typology of omnichannel retailer activities during the COVID-19 pandemic. International Journal of Retail & Distribution Management, 50(8/9), 1062-1094. https://doi.org/10.1108/IJRDM-10-2021-0506
Cui, T., Ghose, A., Halaburda, H., Iyengar, R., Pauwels, K., Sriram, S., Tucker, C., & Venkataraman, S. (2021). Informational challenges in omnichannel marketing: Remedies and future research. Journal of Marketing, 85(1), 103-120. https://doi.org/10.1177/0022242920968810
Dane. (2021). Encuesta de Micronegocios-2021 (Micronegocios-2021 Survey). In: https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/micronegocios#departamental
Dane. (2023). Directorio estadístico de empresas 2018-2021 (Statistical directory of companies 2018-2021”). https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/registro-estadistico-de-empresas/directorio-estadistico-de-empresas
Derhami, S., Montreuil, B., & Bau, G. (2021). Assessing product availability in omnichannel retail networks in the presence of on-demand inventory transshipment and product substitution. Omega, 102, 102315. https://doi.org/10.1016/j.omega.2020.102315
FAEDPYME. (2021). Impacto económico de la CRISIS COVID-19 sobre la MiPyme en Iberoamérica (Economic impact of the COVID-19 MSMEs crisis in Latin America). http://faedpyme.upct.es/sites/default/files/article/157/informecompleto.pdf
Fujimura, T. & Ishino, Y. (2020). Omni-channel challenges facing small-and medium-sized enterprises: balancing between B2B and B2C. In G. Jezic, J. Chen-Burger, M. Kusek, R. Sperka, R. Howlett, & L. Jain (Eds.), Agents and Multi-Agent Systems: Technologies and Applications 2020. Smart Innovation, Systems and Technologies (vol. 186) (pp. 343-353). Springer.
Frías-Navarro, D. & Pascual Soler, M. (2012). Prácticas del Análisis Factorial Exploratorio (AFE) en la investigación sobre conducta del consumidor y marketing (Exploratory factor analysis (EFA) in consumer behavior and marketing research). Suma Psicológica, 19(1), 45-58. https://producciocientifica.uv.es/documentos/5eb09e91299952764113a7c9
Gao, W., Fan, H., Li, W., & Wang, H. (2021). Crafting the customer experience in omnichannel contexts: The role of channel integration. Journal of Business Research, 126, 12-22. https://doi.org/10.1016/j.jbusres.2020.12.056
Gerea, C., Gonzalez-Lopez, F., & Herskovic, V. (2021). Omnichannel Customer Experience and Management: An Integrative Review and Research Agenda. Sustainability, 13(5), 2824. https://doi.org/10.3390/su13052824
Hänninen, M., Kwan, S., & Mitronen, L. (2021). From the store to omnichannel retail: looking back over three decades of research. The International Review of Retail, Distribution and Consumer Research, 31(1), 1-35. https://doi.org/10.1080/09593969.2020.1833961
Hautakangas, T. (2022). The Use of Big Data Analytics in the Strategic Marketing Decision-Making (master thesis, University of Jyväskylä). https://jyx.jyu.fi/handle/123456789/81538?locale-attribute=en
Hoehle, H., Aloysius, J., Chan, F., & Venkatesh, V. (2018). Customers’ tolerance for validation in omnichannel retail stores: Enabling logistics and supply chain analytics. The International Journal of Logistics Management, 29(2), 704–722. https://doi.org/10.1108/IJLM-08-2017-0219
Hsia, T. L., Wu, J. H., Xu, X., Li, Q., Peng, L., & Robinson, S. (2020). Omnichannel retailing: The role of situational involvement in facilitating consumer experiences. Information and Management, 57(8), 103390. https://doi.org/10.1016/j.im.2020.103390
Hübner, A., Hense, J. & Dethlefs, C. (2022). The revival of retail stores via omnichannel operations: A literature review and research framework. European Journal of Operational Research, 302(3), 799-818. https://doi.org/10.1016/j.ejor.2021.12.021
Ibrahim, N. F. & Wang, X. (2019). A text analytics approach for online retailing service improvement: Evidence from Twitter. Decision Support Systems, 121, 37-50. https://doi.org/10.1016/j.dss.2019.03.002
Ivanov, D. & Sokolov, B. (2020). Integrated scheduling of information services and logistics flows in the omnichannel system. In B. Sokolov, D. Ivanov, & A. Dolgui, A. (Eds), Scheduling in Industry 4.0 and Cloud Manufacturing. International Series in Operations Research & Management Science (vol. 289) (pp. 125–140). Springer. https://doi.org/10.1007/978-3-030-43177-8_7
Jocevski, M., Arvidsson, N., Miragliotta, G., Ghezzi, A., & Mangiaracina, R. (2019). Transitions towards omni-channel retailing strategies: a business model perspective. International Journal of Retail & Distribution Management, 47(2), 78-93. https://doi.org/10.1108/IJRDM-08-2018-0176
Kaufman, L. & Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley.
Kotler, P., Kartajaya, H., & Setiawan, I. (2021). Marketing 5.0: Technology for humanity. Wiley.
Kovaleva, I. & Kanke, A. (2021). Smart Technology Advancement in the Transition to the Digital Economy. In E. G. Popkova & B. S. Sergi (Eds), "Smart Technologies" for Society, State and Economy. ISC 2020. Lecture Notes in Networks and Systems (Vol. 155) (pp. 445-453). Springer. https://doi.org/10.1007/978-3-030-59126-7_50
Kumar, I., Rawat, J., Mohd, N., & Husain, S. (2021). Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality, 2021(1). https://doi.org/10.1155/2021/4535567
Liu, L., Feng, L., Xu, B., & Deng, W. (2020). Operation strategies for an omni-channel supply chain: Who is better off taking on the online channel and offline service? Electronic Commerce Research and Applications, 39, 100918. https://doi.org/10.1016/J.ELERAP.2019.100918
Li, C. H. (2023). Food Industry Response Strategies Under the Trend of Omni-Channel Retailing. International Journal of Advanced Research in Technology and Innovation, 5(1), 1-10. https://myjms.mohe.gov.my/index.php/ijarti/article/view/21612
Matarazzo, M., Penco, L., Profumo, G., & Quaglia, R. (2021). Digital transformation and customer value creation in Made in Italy MSME’s: A dynamic capabilities perspective. Journal of Business Research, 123, 642-656. https://doi.org/10.1016/j.jbusres.2020.10.033
Mehta, R., Singh, H., Banerjee, A., Bozhuk, S., Kozlova, N. (2020). Comparative analysis of the consequences of purchasing models transformation within the global digitalization of the economy. Materials Science and Engineering, 940(1), 012071. https://doi.org/10.1088/1757-899X/940/1/012071
Mishra, R., Singh, R., & Koles, B. (2021). Consumer decision-making in omnichannel retailing: Literature review and future research agenda. In International Journal of Consumer Studies, 45(2), 147-174. https://doi.org/10.1111/ijcs.12617
Moreno-Gómez, J., Londoño, J. C., & Zapata-Upegui, L. F. (2023). Marketing strategies and competitiveness: Evidence from Colombian SMEs. TEC Empresarial, 17(2), 48-64. https://doi.org/10.18845/te.v17i2.6701
Orsi, R. (2017). Use of multiple cluster analysis methods to explore the validity of a community outcomes concept map. Evaluation and Program Planning, 60, 277-283. https://doi.org/10.1016/j.evalprogplan.2016.08.017
Qi, Q., Xu, Z., & Rani, P. (2023). Big data analytics challenges to implementing the intelligent Industrial Internet of Things (IIoT) systems in sustainable manufacturing operations. Technological Forecasting and Social Change, 190, 122401. https://doi.org/10.1016/j.techfore.2023.122401
Reuschke, D. & Mason, C. (2022). The engagement of home-based businesses in the digital economy. Futures, 135, 102542. https://doi.org/10.1016/j.futures.2020.102542
Roldán-Sepúlveda, M., Valencia-Cárdenas, M., López-Cadavid, D. A., Restrepo-Morales, J. A., & Vanegas-López, J. G. (2022). Omnicanalidad como estrategia competitiva: una revisión conceptual y dimensional (Omnichanel as a competitive strategy: A conceptual and dimensional review). Estudios Gerenciales, 38(164), 370-384. https://www.icesi.edu.co/revistas/index.php/estudios_gerenciales/article/view/5006
Shutaywi, M. & Kachouie, N. N. (2021). Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy, 23(6), 759. https://doi.org/10.3390/e23060759
Tahirov, N. & Glock, C. H. (2022). Manufacturer encroachment and channel conflicts: A systematic review of the literature. European Journal of Operational Research, 302(2), 403-426. https://doi.org/10.1016/j.ejor.2021.12.006
Valencia-Cárdenas, M., Cárdenas-Cano, L., Jiménez Ruiz, M. E., Velandia Estrada, L. E., & Roldán-Sepúlveda, M. (2023). Condiciones de omnicanalidad en un sector empresarial de Colombia (Omnichannel Conditions in a Business Sector in Colombia). Revista de Métodos Cuantitativos para la Economía y la Empresa, 36, 1-23. https://doi.org/10.46661/rev.metodoscuant.econ.empresa.7405
Wang, R., Xie, X., & Ma, H. (2021), "Evolution of omni-channel business models: a new community-based omni-channel and data-enabled ecosystem", Journal of Contemporary Marketing Science, 4(3), 385-396. https://doi.org/10.1108/JCMARS-11-2020-0045
Wu, P. J. & Chien, C. L. (2021). AI-based quality risk management in omnichannel operations: O2O food dissimilarity. Computers & Industrial Engineering, 160, 107556. https://doi.org/10.1016/j.cie.2021.107556
Zhang, H., Zang, Z., Zhu, H., Uddin, M., & Amin, M. (2022). Big data-assisted social media analytics for business model for business decision making system competitive analysis. Information Processing & Management, 59(1), 102762. https://doi.org/10.1016/j.ipm.2021.102762
Werenowska, A. (2020). Big data as a key aspect of customer relationship management: an example of the restaurant industry. In J. Paliszkiewicz (Ed.), Management in the era of big data: issues and challenges Pages are missing. Auerbach Publications. https://doi.org/10.1201/9781003057291
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Marisol Valencia Cardenas, Jorge Anibal Restrepo Morales, Diego López Cadavid, Juan Gabriel Vanegas López
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.